Door de wereldwijde data management community (dama.org) is in de afgelopen jaren een model ontwikkeld in de Data Management Body of Knowledge (DMBoK). Dit is een praktisch uitgewerkt raamwerk met elf kennisgebieden. Hieronder een visuele representatie van het raamwerk en een korte definitie van ieder kennisgebied.  

  • Data Governance: Is het uitvoeren van controle en beheer omtrent het beheer van data assets. Data Goverance stuurt alle andere dataprocessen
  • Data architectuur: Managen, ontwikkelen en beheren van de requirements en principes rond data
  • Data modelleren: Is het ontdekken, analyseren en beschrijven van data requirements in de vorm van gestandaardiseerde modellen die een data structuur beschrijven
  • Data storage en operations: Ontwerp en implementatie van data opslag en -persistentie
  • Data security: Activiteiten rond de bescherming van informatie en data door autorisatie, authenticatie, toegang, auditing
  • Data integratie en interoperabiliteit: Managen van het transport en consolidatie van data tussen informatiesystemen en organisaties
  • Document- en content management: Managen en (levensloop)beheer van alle soorten data inclusief documenten en content
  • Reference en Master Data: Managen van generieke en algemene (herbruikbare) data en referentie data (codelijsten e.d.)
  • Datawarehousing en BI: Planning, ontwikkeling en beheer van activiteiten voor het samenstellen van data ter ondersteuning van besluitvorming en kenniswerkers
  • Meta Data: Managen, ontwikkelen en beheren van metadata.
  • Data kwaliteit: Activiteiten voor kwaliteitsmanagement van data assets zodat het geschikt is voor gebruik en voldoet aan de wensen van de data consumenten
In het DMBoK is meta data een separaat kennisgebied en is in detail uitgewerkt. Hiermee kunnen we de verschillende data entiteiten binnen een organisatie in de context van de afzonderlijke data management kennisgebieden plaatsen.

Package Meta Data Management
Auteur Bert Dingemans
Alias
Stereotypes